

22nd International Conference on
Diffusion in Solids and Liquids
22 TO 26 JUNE 2026 | RHODES, GREECE

ABSTRACT:

Mg and Zn migration in cation defective spinel-type $MgxZnMnO_3$

M. Nakayama¹, R. Nakahara¹, K. Shimokawa², T. Ichitsubo²

¹Nagoya Institute of Technology, Nagoya, Aichi, 466-8555, Japan.

²Tohoku University, Sendai, Miyagi, 980-8577, Japan.

We investigated Mg insertion in cation-defective spinel $MgxZnMnO_3$ ($0 \leq x \leq 1$) and Mg/Zn ion transport using a neural network potential combined with molecular dynamics simulations[1,2]. Cation configurations were optimized using a genetic algorithm. The results indicate that a vacancy-driven spinel (VDS) region ($x < 0.25$) is stabilized as a solid solution, whereas a spinel–rock-salt biphasic (BSR) coexistence region is favored for $0.25 < x < 0.84$. The diffusion coefficients exhibited a strong composition dependence: both stoichiometric spinel ($x = 0.25$) and rock-salt ($x = 1.0$) phases showed extremely low ionic conductivity ($< 10-10 \text{ cm}^2 \text{ s}^{-1}$), while enhanced diffusivity was observed in the VDS and BSR regions, reaching $3.97 \times 10^{-7} \text{ cm}^2 \text{ s}^{-1}$ at $x = 0.50$. Zn^{2+} consistently diffused faster than Mg^{2+} , and both ions migrated along identical 8a–16c–8a diffusion channels. Trajectory analysis further suggests possible concerted hopping mechanisms. These results reveal that Zn plays a dual role by stabilizing tetrahedral sites and enhancing Mg mobility. The precipitation of stoichiometric phases ($x = 0.25$ and 1.0) may hinder Mg transport and reduce capacity; however, the low energy-above-hull values suggest that solid-solution pathways are kinetically accessible. Overall, these findings provide design guidelines for achieving both high voltage and improved Mg diffusivity in magnesium battery cathodes.

References

[1] Shimokawa et al., *Adv. Mater.*, 33, 2007439 (2021).

[2] . Nakahara et al., *Chem. Asia. J.* 21, e00908, (2025).